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EFFECTS OF POINT-LOSS PUNISHERS ON HUMAN SIGNAL-DETECTION PERFORMANCE

CEeLIA LIE AND BRENT ALsop

UNIVERSITY OF OTAGO, NEW ZEALAND

Three experiments using human participants varied the distribution of point-gain reinforcers or point-
loss punishers in two-alternative signal-detection procedures. Experiment 1 varied the distribution of
point-gain reinforcers for correct responses (Group A) and point-loss punishers for errors (Group B)
across conditions. Response bias varied systematically as a function of the relative reinforcer or punisher
frequencies. Experiment 2 arranged two conditions — one where an unequal ratio of reinforcement (5:1
or 1:5) was presented without punishment (R-only), and another where the same reinforcer ratio was
presented with an equal distribution of point-loss punishers (R+P). Response bias was significantly
greater in the R-only condition than the R+P condition, supporting a subtractive model of punishment.
Experiment 3 varied the distribution of point-gain reinforcers for correct responses across four unequal
reinforcer ratios (5:1, 2:1, 1:2, 1:5) both without (R-only) and with (R+P) an equal distribution of point-
loss punishers for errors. Response bias varied systematically with changes in relative reinforcer
frequency for both R-only and R+P conditions, with 5 out of 8 participants showing increases in
sensitivity estimates from R-only to R+P conditions. Overall, the results indicated that punishers have
similar but opposite effects to reinforcers in detection procedures and that combined reinforcer and
punisher effects might be better modeled by a subtractive punishment model than an additive
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punishment model, consistent with research using concurrent-schedule choice procedures.
Key words: punishment, point-loss, signal detection, mouse-click, humans

Many situations require organisms to dis-
criminate between stimuli that signal different
consequences. For example, a bee must decide
whether a plant’s pollen is toxic or safe, or a
pedestrian must decide whether or not it is
safe to cross the road. In these examples, both
the positive consequences arising from correct
choices and the negative consequences arising
from errors affect the choices that are made.

Signal-detection tasks (also known as condi-
tional discriminations) are often used to study
choice and stimulus discriminability. This is a
discrete-trial procedure where, on each trial,
the subject is presented with one of two
discriminative stimuli (S; or So) that vary on
some dimension (e.g., intensity or color). The
subject then chooses between two response
alternatives (B or Bo), where B is the correct
response following an S; presentation, and By
is the correct response following an So
presentation. B; and By are usually physical
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responses, such as left or right key pecks or
lever presses. With two stimulus types (S; and
Sy) and two response options (B; and Bs),
there are four possible response outcomes
(Figure 1): By; (responding B, following S;)—
a correct response, Bjo (responding By follow-
ing S;)—an error, By; (responding B; follow-
ing Sg)—an error, and Bgs (responding Bo
following Sso)—a correct response. Often,
correct responses (By; and Bgy) are reinforced
(e.g., money: Johnstone & Alsop, 2000; food:
McCarthy & Davison, 1979; brain stimulation:
Terman, 1970) while errors (B;s and Boy) have
no consequence.

Behavioral models of signal-detection per-
formance (e.g., Alsop, 1991; Davison, 1991;
Davison & Nevin, 1999; Davison & Tustin,
1978) arose from the generalized matching
law (GML: Baum, 1974) which describes how
behavior is allocated across two concurrently
available response alternatives when each
alternative is associated with its own schedule
of reinforcement. The GML can be written

1

B R
1 — ) = al 1 1
Og(B‘) a 0g<R2> + loge, (1)

where B; and By are the number of responses
made on Alternatives 1 and 2 respectively, and
R; and Ry are the numbers of obtained
reinforcers for B, and By responses respective-
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Fig. 1. A 2 X 2 matrix illustrating the four possible
response outcomes in a two-alternative signal-detection
task.

ly. Equation 1 is in the form of a straight line
with slope « and intercept of log ¢ The
parameter a is the sensitivity of the subject’s
behavior to the distribution of reinforcers,
and measures the extent to which changes in
the reinforcer distribution (R;/Ry) produce
changes in the response distribution (B;/Bo).
The parameter log ¢ measures any inherent
bias in the subject’s behavior towards making
B; or By responses, irrespective of the rein-
forcer distribution. Inherent bias is often
attributed to undetected asymmetries in the
apparatus (e.g., one key requires less force to
peck than the other) or the subject (e.g., color
or side preferences) (Baum, 1974).

The most widely-used behavioral descriptor
of signal-detection performance is Davison and
Tustin’s (1978) GML-based model. They pro-
posed that when two stimuli (S; and Sy) are
indistinguishable, the distribution of responses
across the two response alternatives (B;/Bo)
should depend on the relative distribution of
reinforcers for the two alternatives (R;/Rs) in
the manner of the GML (Equation 1). Howev-
er, once the stimuli become more distinguish-
able, behavior also becomes biased towards
making correct (B;; and Byy) responses. Choice
in detection tasks is described on S; trials by

10g<§11> = alog(RH> + logc + logd, (2)

12 Ry

and on S trials by

321) (Rn)
log| — ) = alog|— ) + logc¢ — logd, (3
g(322 ¢\ 2 g gd, (3)

where By, Byo, Boy, and Byg, @, and log ¢ are as
above, and R;; and Rge are the numbers of
reinforcers obtained for correct B;; and Boo
responses respectively. The parameter log d
measures discriminability between the two
stimuli, S; and So. When log d = 0, the stimuli
are not discriminated and Equations 2 and 3
reduce to the GML. As discriminability (log d)
increases, subjects make more B; responses
following S; (B;;) and more By responses
following Sy (Bgo); hence, log d is additive in
Equation 2 and subtractive in Equation 3.

Algebraic subtraction and addition of Equa-
tions 2 and 3 allows separate calculation of
point estimates of discriminability and bias.
Algebraic subtraction provides a biasfree
measure of discriminability:

logd = O.5log(§“22>
12 D21

(4)

where all notation is as above. Algebraic

addition of Equations 2 and 3 provides a

discriminability-free measure of response bias:
Bi1 B

Rn)
= alog|— ) + loge¢
g(R22 g

where all notation is as above. Equation 5
states that response bias (log 4) incorporates
both reinforcer effects and inherent bias (log
¢), as described by the GML.

Davison and Tustin’s (1978) behavioral mod-
el of signal detection has described choice
behavior well when relative reinforcer frequen-
cies or magnitudes are varied (e.g., Boldero,
Davison, & McCarthy, 1985; McCarthy & Davi-
son, 1979). The model also predicts an inde-
pendence between its parameters, for example,
changes in the distribution of reinforcers (Ry;/
Ro9) should not produce systematic changes in
discriminability (log d), and changes in discrim-
inability should not affect sensitivity to the
reinforcer distribution (a). However, there is
conflicting evidence regarding whether these
assumptions of independence are met (see
Alsop & Porritt, 2006; Johnstone & Alsop,

(5)
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1999). Despite these limitations, the model is
still widely used for detection and matching-to-
sample data analyses.

Davison and Tustin’s (1978) model and
subsequent research (see Davison & McCarthy,
1988, for a summary) has focused almost
exclusively on the effects of varied reinforcer
contingencies. In contrast, the effects of
punishers for errors have received relatively
little attention (but see Galanter & Holman,
1967; Hume & Irwin, 1974; Wright & Nevin,
1974). Hume and Irwin investigated the effects
of varied punisher (time-outs) contingencies
using a detection procedure with rats but
found little effect of varied relative time-out
durations on response bias. Galanter and
Holman varied both relative monetary gains
and losses and found participants were biased
towards responding on the alternative associ-
ated with the greater monetary gain and the
smaller monetary loss. Finally, Wright and
Nevin varied the intensity of shock punish-
ment on one alternative then increased the
frequency of reinforcement for that alternative
and found changes in the location (but not
the slope) of the bias function. The lack of
punishment research with detection proce-
dures is of concern because, like reinforcers,
punishers are common in many real-world
detection tasks (e.g., toxic pollen might kill
the bee). Ideally, any model of detection
should describe both the effects of reinforce-
ment for correct responses and the effects of
punishment for errors.

To incorporate punishment into a detection
model, it seems obvious to examine how the
effects of punishers and reinforcers are mod-
eled in standard concurrent schedules. There
are two main competing models—an additive
model (e.g., Deluty, 1976) and a subtractive
model (e.g., de Villiers, 1980; Farley &
Fantino, 1978). The additive model proposes
that the effects of punishment on one
response alternative add to the effects of
reinforcement on the other alternative, while
the subtractive model proposes that the effects
of punishment directly subtract from reinforc-
er effects on the same alternative. Few studies
have investigated the predictions of these
models, but there appears to be more empir-
ical support for the subtractive model (Critch-
field, Paletz, MacAleese, & Newland, 2003; de
Villiers, 1980; Farley, 1980; Farley & Fantino,
1978) than the additive model (Deluty, 1976).

Both models are readily incorporated into
Davison and Tustin’s (1978) GML-based mod-
el of signal detection (Equations 2 and 3).
When correct responses are intermittently
reinforced and errors are intermittently pun-
ished, the additive punishment version (e.g.,
Deluty, 1976) of Davison and Tustin’s model
is, following S; presentations,

1 (&1) <R11 + qu)
og|— ) = alog| ———
Bis Ros + qPo (6)
+ log ¢ + logd,
and following S, presentations,
| <B21> (Rn + qP12)
og(— | = alog| ————
By Rey + qPan (7)
+ logc¢ — logd,

with response bias calculated as

B B
logbh = 0.51og <B1;BZ)

R + qP12)
= alog| ———] + loge.
g<R22 + gPa &

(8)

Notation is as above, but now P and Py, are
the numbers of obtained punishers for incor-
rect Bjo and By; responses respectively, and ¢ is
a scaling parameter used to equate the value of
one punisher relative to one reinforcer (e.g., if
g = .5, then a punisher would be half the
perceived value of a reinforcer). In Equations
6 to 8, the effects of punishers obtained on
one response alternative (e.g., Pyo for incor-
rect By responses) add to the effects of
reinforcers obtained for the other response
alternative (e.g., Ry, for correct B, responses).

Likewise, a subtractive punishment version
(e.g., de Villiers, 1980; Farley, 1980) of Davison
and Tustin’s (1978) model can be written,
following S; presentations

B Ry — qPy
log( — ) = alog| ———=
By Roo — qPro (9)
+ log ¢ + logd,

and following Sy presentations by

By Ry — qPy
log(—) = alog| ————
Boy Roo — qPro (10)

+ log ¢ — logd,
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with response bias calculated as

logb = 0.51og <BHBQI)

B2 By

Ry — qP21>
= alog| ———= + loge,
g<322 — qPro 8

(11)

where all notation is as above. In Equations 9,
10, and 11, the effects of punishers obtained
on one response alternative (e.g., Po; for
incorrect B; responses) subtract from the
effects of reinforcers obtained on the same
response alternative (e.g., R;; for correct By
responses). Note that Equations 9, 10, and 11
are undefined if ¢Po; is greater that Ry, or ¢Pyo
is greater than Roo.

Figure 2 illustrates bias predictions made by
the additive (Equation 8) and subtractive
(Equation 11) punishment versions of Davison
and Tustin’s (1978) model under two different
reinforcer and punisher arrangements. In the
first arrangement (Figure 2, top), relative
punisher frequency was varied from 1:11 to
11:1 (variable interval [VI] 60 s:VI 5.5 s to VI
5.5 s:VI 60 s) with a constant and equal (VI
3 s:VI 3 s) background rate of reinforcement.
Figure 2 (top) shows that the additive (dotted
line) and subtractive (dashed line) models
predict systematic biases away from the more
punished alternative (i.e., negatively sloping
functions) with the subtractive model predict-
ing slightly more extreme response biases than
the additive model.

Figure 2 (bottom) shows the predictions of
both models when relative reinforcer frequency
was varied (7:1 to 1:7) with a constant and equal
(1:1) background rate of punishment. A
reinforcer-only baseline, where the relative
reinforcer frequency was varied (7:1 to 1:7)
without any punishment for errors, is also
shown for comparison (solid line). When
subjects received a constant and equal rate of
punishers for errors, the additive and subtrac-
tive models make different predictions. The
additive model (dotted line) predicts a shal-
lower function than the reinforcer-only condi-
tions; that is, it predicts a reduced preference
for the more reinforced alternative. The sub-
tractive model (dashed line) predicts a steeper
(and nonlinear) function than the reinforcer-
only conditions; that is, it predicts an increased
preference for the more reinforced alternative.

The present experiments examined the
effects of punishment for errors in detection
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Fig. 2. Predictions made by punishment versions of
Davison and Tustin’s (1978) GML-based model of signal
detection. The effects of varied punisher ratio (top) and
reinforcer ratio (bottom) on response bias (log 4) are plotted
for additive model predictions (dotted lines), and subtractive
model predictions (dashed lines), when a = .9, log ¢ = 0, and
g = 1. Figure 2 (bottom) also plots the predicted changes in
response bias when the relative reinforcer ratio is varied
without punishment for errors (solid line).

procedures using human participants. Histor-
ically, the most commonly used punisher for
nonhuman subjects in behavioral experiments
was electric shock (Baron, 1991). Due to
ethical constraints associated with using hu-
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man participants however, response cost was
chosen as the punisher type for the present
experiments. Response cost has been an
effective aversive stimulus in both basic (Cros-
bie, 1998) and applied (Lerman & Vorndran,
2002) settings, and is defined as the contin-
gent removal of conditioned reinforcers, such
as points (Weiner, 1962, 1963) or money
(Critchfield, et al.,, 2003). In the present
experiments, reinforcers were point gains
and punishers were point losses. These points
were exchangeable for reduced session time
(i.e., point losses resulted in increased session
time) and Experiment 1 investigated whether
these were effective reinforcers and punishers
for human participants. Experiments 2 and 3
examined which of the two competing models
(additive or subtractive) was a better descrip-
tor of choice in detection procedures.

EXPERIMENT 1

Experiment 1 used a perceptual discrimina-
tion task where participants judged whether
stimulus arrays contained more blue or yellow
objects (e.g., Johnstone & Alsop, 1996, 2000).
Two groups of participants were used—Group
A examined the efficacy of point-gain reinforc-
ers while Group B examined the effects of
pointloss punishers. For Group A, the ratio of
reinforcers for correct responses (R;;:Rgo)
varied across four conditions (5:1, 2:1, 1:2,
and 1:5) with no punishers for errors. It was
predicted that Group A participants would be
systematically biased towards responding to the
more reinforced alternative, consistent with the
GML (Equation 5) and previous human (e.g.,
Alsop, Rowley, & Fon, 1995; Johnstone & Alsop,
1996) and nonhuman (e.g., McCarthy &
Davison, 1979) detection research. For Group
B, the ratio of punishers for errors (Pg;:Py9)
varied across four conditions (5:1, 2:1, 1:2, and
1:5) against a background of a 1:1 reinforcer
ratio for correct responses. It was predicted that
participants in Group B would be systematically
biased away from responding to the more
punished alternative (Equations 8 and 11, and
Figure 2, top).

METHOD
Participants

Undergraduate students at the University of
Otago participated as part of an optional piece

of assessment. In Group A, there were 1 male
and 5 females aged between 18 to 19 years (M
= 18.3 years). In Group B, there were 3 males
and 3 females aged between 18 to 21 years (M
= 19.0 years).

Apparatus

The experiment was conducted in a room
approximately 2.3 m X 3.0 m. A computer ran
the tasks and recorded the participants’
responses using a program written in Micro-

soft VisualBasic™ 6.0. Stimuli and instructions
were presented on a standard 38 cm (15")
color monitor. Stimuli were 10 X 10 arrays
(129 mm wide X 138 mm high) in the center
of a white screen with each position of the
array occupied by either a blue ‘“‘greeblie’” or
yellow ‘“‘greeblie’” (i.e., alien cartoon charac-
ters). Each greeblie was approximately 10 mm
wide by 12 mm high against a white back-
ground. Stimuli classified as ‘“‘more blue”
consisted of at least 52 array positions filled
randomly with blue greeblies and no more
than 48 array positions filled with yellow
greeblies. Stimuli classified as ‘““more yellow”
had at least 52 yellow greeblies and no more
than 48 blue greeblies. As described below
(Procedure), the final proportions of blue and
yellow greeblies depended on each partici-
pant’s performance.

Participants responded by clicking the com-
puter mouse over one of two response
“boxes”” presented on the computer screen
1.5 ecm under each stimulus array and 7 cm
apart from one another. Each response box
was 4 cm wide by 1.5 cm high. The left and
right boxes were colored and labeled ‘“‘blue’
and ‘“‘yellow” respectively. An arrow-shaped
cursor indicated the virtual position of the
computer mouse on the screen. Figure 3
shows an example of a stimulus array with
the responses boxes presented below.

Procedure

All participants attended four experimental
sessions (one condition per session), no less
than 24 hours apart and no more than one
week apart. The order of conditions was
partially counterbalanced across participants
(Table 1). Participants read an information
sheet which briefly described the experiment
and signed an informed consent form before
the start of the first session. They were then
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Fig. 3. An illustrative example of a ‘“‘more blue”
stimulus array with the response buttons presented during
each trial in Experiment 1.

seated with their heads approximately half a
meter away from the computer screen.

Group A. The following set of instructions
was presented on the computer screen at the
start of each session. Participants advanced
screens using the computer mouse to click the
“next screen’ button located at the bottom
left corner of the screen.

Screen 1: “Hi, this is a simple computer game. You
will see some patterns of blue greeblies and yellow
greeblies. You must decide if there are more blue ones
or yellow ones, and then press the blue or yellow
button. Here is an example of a pattern.”

Screen 2: “If there are more blue greeblies, press the
blue button.” An example array showing more
blue greeblies was presented.

Screen 3: “If there are more yellow greeblies, press
the yellow button.” An example array showing
more yellow greeblies was presented.

Screen 4: “Sometimes when you are correct you will
gain a point. Sometimes nothing happens, you might
be correct or wrong. When you get 70 points, the
session will end and you can go!”

Screen 5: “As you go, a red bar (like that on the
right) will show you how close you are to finishing the
experiment. When the red bar gets to the top, you can
go!” A vertical thermometer bar was presented
on the right side of Screen 5.

Screen 6: “Any questions? If not, you are ready to
start the session.” The ‘‘Begin Experiment”
button appeared.
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Each trial began with a 15 mm X 15 mm
animated picture of a juggler (warning stimu-
lus) in the middle of the screen for 1s. A
stimulus array (containing either more blue or
yellow greeblies) and the two response boxes
then appeared. The array remained on screen
until the participant clicked on a response
box, or for a maximum of 3s. If the
participant had not responded after the 3-s
stimulus presentation, the array disappeared
and the response boxes remained on the
screen until the participant clicked one of
them. The response boxes then disappeared.

Following each response, there were two
possible consequences. If a reinforcer had not
been scheduled for that response, the screen
went blank for 1s (i.e., no consequence),
followed by a l-s intertrial interval (ITI). A
“next trial” button then appeared in the
center of the screen. A click on the button
started the next trial.

If the participant made a correct response
(B11 or Bgo) and a reinforcer was scheduled for
that response, the statement: ““Correct! You are
one point closer to finishing the session’’, appeared
on the center of the screen for 2 s. This was
accompanied by a 1-s “‘ta da!”” sound and a
thermometer bar appeared on the right side of
the screen. The bar was divided into 70 blank
spaces (the number of points required to exit
the session). Each time the participant ob-
tained a point, one space of the bar was filled
in red, indicating that the bar had gone up. A
1-s ITI then followed, the ‘‘next trial’’ button
appeared on the screen, and the participant
clicked the button to start the next trial.

The stimulus presentation probability (SPP)
was set at .5 throughout the experiment; that is,
on any trial, the participants were equally likely
to be presented with a stimulus array containing
“more blue’” or “more yellow’’ greeblies. The
difficulty level of the discrimination was titrated
for each participant to make accuracy levels
across participants more equal. Each session
began with 56 greeblies of one color and 44
greeblies of the other color (56:44). After the
20" trial, the computer program analyzed
performance over the last 16 trials. If the
percentage of correct responses was greater
than 90% across the 16 trials, the proportions
were made more equal by a subtraction factor
of 2 (e.g., a 56:44 distribution was reduced to
54:46). If the percentage of correct responses
was between 70% and 90% for the previous 16
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Table 1
The numbers of B;y, Bjo, Boy, and Bes responses, Ry; and R reinforcers, Po; and Pys punishers,
and estimates of discriminability (log d) and response bias (log b) calculated across the last 120
trials for each participant in each condition in Group A (varied reinforcer ratios) and Group B
(varied punisher ratios) of Experiment 1. The more reinforced (Group A) or punished (Group
B) alternative is presented in bold and underlined for each condition.
Part. Cond.  Order By Bio Bo; Boo Ry Roo Py, Pio logd log b
GROUP A
DN 5:1 1 54 7 22 37 27 5 0 0 0.56 0.33
2:1 3 52 9 18 41 24 12 0 0 0.56 0.20
1:2 4 40 21 6 53 11 21 0 0 0.61 —0.33
1:5 2 25 34 11 50 4 27 0 0 0.26  —0.40
EW 5:1 2 50 9 22 39 28 7 0 0 0.50 0.25
2:1 4 44 16 24 36 22 8 0 0 0.31 0.13
1:2 3 28 30 19 43 11 18 0 0 0.16  —0.19
1:5 1 32 28 10 50 5 24 0 0 0.38  —0.32
GJs 5:1 3 46 15 36 23 23 4 0 0 0.15 0.34
2:1 1 50 10 24 36 23 10 0 0 0.44 0.26
1:2 2 34 26 22 38 9 20 0 0 0.18 —0.06
1:5 4 30 30 11 49 5 25 0 0 032 —0.32
KP 5:1 4 45 17 19 39 22 6 0 0 0.37 0.06
2:1 2 41 20 18 41 23 11 0 0 0.33  —0.02
1:2 1 35 23 13 49 11 21 0 0 0.38  —0.20
1:5 3 42 18 28 32 4 19 0 0 0.21 0.15
SLJ 5:1 1 38 22 34 26 20 5 0 0 0.06 0.18
2:1 3 438 12 17 43 24 13 0 0 0.50 0.10
1:2 2 24 39 9 48 8 17 0 0 0.26 —0.47
1:5 4 40 21 12 47 5 28 0 0 0.44 —0.16
SC 5:1 3 44 15 24 37 24 6 0 0 0.33 0.14
2:1 2 48 13 15 44 18 11 0 0 0.52 0.05
1:2 4 31 30 18 41 8 17 0 0 019 -0.17
1:5 1 30 30 10 50 6 25 0 0 035 —0.35
GROUP B
DLG 5:1 4 42 19 13 46 16 11 9 2 0.45 —0.10
2:1 2 25 35 5 55 17 13 4 1 0.45 —0.59
1:2 1 52 8 10 50 19 20 2 4 0.76 0.06
1:5 3 51 9 17 43 17 15 2 7 0.58 0.18
HLB 5:1 3 39 20 14 47 15 15 10 2 0.41  —0.12
2:1 1 36 24 10 50 14 12 5 3 0.44 —0.26
1:2 4 32 31 16 41 14 12 5 11 0.21  —0.20
1:5 2 52 8 20 40 16 15 0 6 0.56 0.26
JA 5:1 1 50 9 13 48 19 21 8 1 0.66 0.09
2:1 3 41 19 11 49 18 18 9 4 0.49 —0.16
1:2 2 41 19 9 51 17 18 4 9 054 —0.21
1:5 4 48 12 15 45 20 17 2 7 0.54 0.06
JH 5:1 3 45 15 5 55 19 16 4 0 0.76  —0.28
2:1 1 41 19 18 42 16 14 9 4 0.35  —0.02
1:2 2 44 14 23 39 15 13 5 10 0.36 0.13
1:5 4 55 6 23 36 16 13 0 3 0.58 0.38
KMC 5:1 2 37 22 20 41 16 12 10 2 0.27  —0.04
2:1 4 36 25 22 37 12 13 9 3 0.19 —0.03
1:2 3 40 19 13 48 15 17 3 8 0.45 —0.12
1:5 1 42 18 22 38 14 16 2 12 0.30 0.07
PN 5:1 1 33 28 7 52 13 15 6 0 0.47  —0.40
2:1 3 31 28 12 49 13 15 7 5 0.33  —0.28
1:2 4 40 19 12 49 12 16 3 6 0.47 —0.14
1:5 2 38 23 12 47 16 15 2 15 0.41  —0.19
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trials, the proportions were made more equal
by a subtraction factor of 1 (e.g., 56:44 became
55:45). If the percentage of correct responses
was between 60% and 70%, the proportions
remained the same. If the participant received
less than 60% correct, then the proportions
were made more different by a factor of 1 (e.g.,
56:44 became 57:43). The program then
continued to analyze the previous 16 trials after
every block of 10 trials, and titrated difficulty
ratios accordingly. Following the 60" trial, the
difficulty level (proportion of blue and yellow
greeblies) remained constant throughout the
remainder of the session. The most difficult
ratio was limited to 52:48, but there was no limit
set on the least difficult ratio.

The relative distribution of reinforcers across
the two response alternatives was allocated using
interdependent scheduling (Stubbs & Pliskoff,
1969), also known as a controlled procedure
in behavioral signal-detection research (e.g.,
McCarthy & Davison, 1984), to ensure that
arranged and obtained relative distributions
were similar. The computer randomly sched-
uled the next reinforced correct response
(“more blue” or “more yellow”) according
to the arranged reinforcer frequency ratio
(Ry1:Rg9). This varied across the four conditions
(5:1, 2:1, 1:2, and 1:5). For example, if the
participant was in the 5:1 condition, they were
five times more likely to receive reinforcers for
correctly responding on the left response box
(“more blue’’) following a “‘more blue’ stim-
ulus presentation (B;;) than for correctly
responding on the right response box (‘“‘more
yellow”’) following a ‘“‘more yellow” stimulus
presentation (Bge). The overall scheduled rate
of reinforcement across the two response
alternatives was based on a VI 10-s schedule.
The VI schedule timer ran through each trial
(i.e., through the warning stimulus presenta-
tion, array presentation, the time the participant
took to respond, and the consequence), and
only paused at the end of each trial (from the
presentation of the ‘“‘next trial”’ button to when
the participant clicked on the button). Each
session ended when the participant reached a
total of 70 points, or when the participant
reached the 400" trial, whichever came first.

Group B. Group B participants performed a
similar task to those in Group A. However,
Group B participants also received occasional
punishers (point losses) for errors. Screen 4
was changed accordingly to:

Screen 4: “Sometimes when you are correct you will
gain a point. Sometimes nothing happens, you might
be correct or wrong. Sometimes when you are wrong
you will lose a point. When you get 60 points, the
session will end and you can go!”

Thus, there were three possible consequences
following each response. Like Part A, partici-
pants could receive no consequence if neither a
reinforcer nor punisher was scheduled for that
particular response (i.e., 1-s blank screen), or a
reinforcer if they made a correct response (By;
or Bgs) and a reinforcer was scheduled for that
response (see Group A for details). The third
consequence occurred if the participant made
an incorrect response (Bjo or Bg;) and a
punisher was scheduled. The statement: “Incor-
rect! You are one point further from finishing the
session!”appeared on the center of the screen for
2 s, accompanied by a 1-s “argh!”’ sound and the
thermometer bar. One space of the red bar was
deleted, showing that the bar had gone down.
All three consequence types were followed by a
1-s ITT and the presentation of the “next trial”
button. Although participants were informed
that the session ended after 60 points, like
Group A, the session actually ended when the
participant had obtained 70 point-gain reinforc-
ers (irrespective of how many point-loss punish-
ers they had received), or when the participant
reached the 400™ trial, whichever came first.

Like Group A, the distributions of reinforc-
ers and punishers were allocated using inter-
dependent scheduling. The distribution of
reinforcers was held constant and equal (1:1)
for Group B; that is, participants received
equal numbers of reinforcers for correct By,
and Bgo responses. For punishers, the com-
puter program randomly scheduled the next
incorrect response to be punished according
to the arranged punisher ratio. For Group B,
the punisher frequency ratio (Pg;:Pj9) was
varied across the four conditions; these were
5:1, 2:1, 1:2, and 1:5. The overall rate of
reinforcement across the two response alter-
natives was based on a VI 10-s schedule, while
the overall rate of punishment was on a VI 20-s
schedule. Both VI timers ran during each trial,
and paused between the presentation of the
“next trial”’ button and the participants’
response to the button.

RESULTS AND DISCUSSION

Experimental sessions lasted approximately
25 to 35 min, with an average of 277 trials
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completed (SD = 32.9). The last 120 trials
from each experimental session were analyzed
separately for each participant in Groups A
and B of Experiment 1. For these data, the
number of left button (‘“‘more blue’’) respons-
es following S; (By;) and Sy (Bo) and right
button (“‘more yellow’’) responses following
S; (Bgy) and Se (Bgg) were calculated. The
number of reinforcers (point gains) obtained
for correct responses on each button (R;; and
Rg9) and the number of punishers (point
losses) obtained for errors on each button (Pg;
and P;o) were also calculated. Measures of
discriminability (log d, Equation 4) and
response bias (log b, Equation 5) were
calculated for each participant from each
condition (Table 1).

Figure 4 (top) plots estimates of discrimina-
bility (log d) across the four reinforcer or
punisher ratios for each participant in Groups
A (left) and B (right) of Experiment 1.
Estimates of discriminability did not significant-
ly differ across the four conditions for partici-
pants in Group A, F(3,15) = 1.244, p = .33, or
Group B, F(3,15) = 1.270, p = .32. This
independence between discriminability and
relative reinforcer (Group A) and punisher
(Group B) frequency was consistent with
Davison and Tustin’s (1978) model. However,
a mixed 4 (Condition) X 2 (Group) analysis of
variance (ANOVA) found that the difference in
discriminability between the two groups ap-
proached significance, F(1,10) = 4.474, p = .06;
that is, mean discriminability for Group B
participants (M = .46) was somewhat higher
than mean discriminability for Group A partic-
ipants (M = .35). It is possible this was a result
of participants in Group B receiving more
feedback than those in Group A. For example,
Group A participants obtained 70 reinforcers
(points) in an average of 271 trials; that is,
about 26% of trials ended with feedback. In
comparison, Group B participants obtained 70
reinforcers and an average of 24.5 punishers in
an average of 282 trials; that is, about 34% of
their trials ended with feedback (i.e., reinforce-
ment or punishment). However, it is also
possible that the sample of participants chosen
for Group B were better at numerosity judg-
ments than participants in Group A, irrespec-
tive of the punisher contingencies.

Figure 4 (bottom) plots estimates of response
bias (log b) across the four reinforcer or punisher
ratios for each participant in Groups A (left) and

B (right) of Experiment 1'. For Group A,
estimates of response bias differed significantly
across conditions, F(3,15) = 13.38, p < .001.
Individual estimates of sensitivity (i.e., slopes)
calculated using least squares linear regression
analyses on the response bias data for each
participant found positive slopes for 5 of the 6
participants (M = .36), and a one-sample #test
performed on these slopes confirmed that they
were significantly greater than zero, #(5) = 4.355,
p < .01. In other words, participants in Group A
were systematically biased towards responding on
the alternative associated with the higher fre-
quency of reinforcement. These results were
consistent with the standard (reinforcement-
only) version of Davison and Tustin’s (1978)
model (Equation 5). Furthermore, mean sensi-
tivity (0.36) was comparable to those obtained in
previous human detection experiments (e.g.,
Alsop, et al., 1995; Johnstone & Alsop, 1996).
For Group B, estimates of response bias also
varied systematically across the four condi-
tions, F(3,15) = 4.387, p < .05, and least
squares linear regression analyses performed
on each participant found negative slopes for
5 of the 6 participants (M = —.20). A one-
sample ttest confirmed that estimates of
sensitivity for Group B participants were
significantly less than zero, #(5) = 2.765, p
<.05; that is, participants in Group B were
systematically biased away from the response
alternative associated with the higher frequen-
cy of pointloss punishment. Although the
mean slope (—0.20) obtained from Group B
was shallower than that obtained from Group
A (0.36), this is perhaps not surprising because
participants in Group B also received equal
rates of reinforcers (at a higher overall rate
than the punishers); thus, the effect of the
reinforcers should attenuate the effect of the
punishers. The results from Group B were
consistent with both punishment versions of
Davison and Tustin’s (1978) signal-detection
model (Equations 6 to 11; Figure 2, top),
which predict a negative relation between
relative punisher frequency and response bias.
Overall, Experiment 1 demonstrated that
point gains for correct responses were effective
reinforcers (Group A) and that point losses for
errors were effective punishers (Group B) for
human participants in a detection procedure.

'A summary of these data were presented in a short
theoretical article by Lie & Alsop (2007).
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Fig. 4. Discriminability (log d — top) and response bias (log b — bottom) are plotted over changes in relative
reinforcer frequency (log R;;/Rgo) for Group A (left) and relative punisher frequency (log Po;/P19) for Group B (right)
of Experiment 1. Individual participant data and the overall means are given.

had similar but opposite effects to reinforcers
on human signal-detection performance. Ex-

Experiment 1 established that point gains periments 2 and 3 examined whether additive
and losses were effective reinforcers and (e.g., Deluty, 1976) or subtractive (e.g., de
punishers respectively, and that the punishers Villiers, 1980; Farley, 1980) models of punish-

EXPERIMENT 2
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ment better model the effects of punishment
in signal detection. These two competing
models make different predictions when rela-
tive reinforcer frequency is varied and a
constant and equal rate of punishment is
superimposed on both response alternatives.
When relative reinforcer frequency is varied in
the absence of punishment, behavior can be
described by Davison and Tustin’s (1978)
GML-based model of signal detection (Equa-
tion 5, and Figure 2 bottom, solid line).
However, when a constant and equal rate of
punishment is also included, the additive
punishment version of Davison and Tustin’s
model (Equation 8) predicts a reduced pref-
erence for the more reinforced response
alternative (Figure 2 bottom, dotted line),
while the subtractive punishment version of
Davison and Tustin’s model (Equation 11)
predicts an increased preference for the more
reinforced alternative (Figure 2  bottom,
dashed line).

Although no published studies have tested
the predictions of the two competing models
using signal-detection procedures, some re-
search has tested the two models using
standard  concurrent-schedule  procedures
(Critchfield, et al., 2003; de Villiers, 1980;
Deluty, 1976; Farley, 1980). One approach
involves arranging a constant and unequal
distribution of reinforcers across two alterna-
tives (reinforcer-only [R-only] condition) then
superimposing a constant and equal distribu-
tion of punishers (reinforcer + punisher [R+P]
condition) and measuring preference under
both condition types. Using this arrangement,
the subtractive model predicts increased pref-
erence for the richer (i.e., more reinforced)
alternative with the inclusion of punishment
(i.e., greater preference in R+P conditions
than R-only conditions), while an additive
model predicts decreased preference for the
richer alternative (i.e., greater preference in R-
only conditions than R+P conditions).

A number of researchers have taken this
approach. Using pigeons as subjects and
electric shock punishers, both Farley (1980)
and de Villiers (1980) found increased prefer-
ence for the rich alternative in conditions
where electric shock was superimposed across
both alternatives (R+P conditions) when com-
pared to a baseline condition where unequal
concurrent schedules of reinforcement were
presented without electric shock (R-only con-

dition). Critchfield et al. (2003) also found an
increase in preference for the rich alternative
when an equal distribution of point-loss
punishers was superimposed on unequal con-
current schedules of point-gain reinforcement
using human participants. Thus, these studies
unanimously supported a subtractive model of
punishment over an additive model for con-
current-schedule performance.

Experiment 2 used the same perceptual
discrimination task as Experiment 1 and
arranged two conditions: an R-only condition
where the reinforcer ratio was held constant
and unequal at either 1:5 or 5:1 with no
punishers for errors, and an R+P condition
where the same reinforcer ratio was arranged
but with a 1:1 punisher ratio superimposed. A
comparison of estimates of response bias
between R-only and R+P conditions should
indicate whether an additive or subtractive
punishment model better describes human
signal-detection performance.

MEeTHOD
Participants

Undergraduate students at Victoria Univer-
sity of Wellington participated as part of an
optional piece of assessment. There were 8
males and 8 females aged between 18 and 35
years (M = 20.1 years).

Apparatus

The apparatus and stimuli were similar to
those used in Experiment 1. However, the
experiment was conducted in a room approx-
imately 5 m X 5 m and the task was presented
on a 43 cm (17") LCD screen. Half the
participants were presented with 10 X 10
arrays of blue and yellow greeblies (the same
as Experiment 1) while the other half were
presented with 10 X 10 arrays consisting of red
and (darker) blue greeblies. (Anecdotal evi-
dence from the first experiment suggested
that the yellow greeblies were more salient
than the blue greeblies). Due to changes in
screen size and resolution for Experiment 2,
the 10 X 10 arrays measured approximately
118 mm wide by 119 mm high, with each
greeblie measuring approximately 8.5 mm
wide by 9.0 mm high (i.e., slightly smaller
than in Experiment 1). All other aspects of the
apparatus and stimuli were identical to Exper-
iment 1.
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Procedure

The general procedure for Experiment 2
was similar to Experiment 1. However, there
were only four condition types in Experiment
2: two R-only conditions (5:1R and 1:5R) and
two R+P conditions (5:1P and 1:5P). The R-
only conditions were identical to the 5:1 and
1:5 conditions for Group A of Experiment 1;
that is, correct responses were occasionally
reinforced and there were no punishers for
errors. The reinforcer ratio was held con-
stant at 5:1 (i.e., 5:1R condition) or 1:5 (i.e.,
1:5R condition) throughout the session
using interdependent scheduling and the
rate of reinforcement was based on a VI 10-
s schedule.

The R+P conditions were similar to Group B
of Experiment 1; that is, correct responses
were occasionally reinforced while errors were
occasionally punished. For Experiment 2
however, the reinforcer ratio was held constant
and unequal at 5:1 or 1:5 throughout the
session, with a constant and equal (1:1) rate of
point-loss punishers superimposed (5:1P and
1:5P conditions respectively). Like Group B of
Experiment 1, the rate of reinforcement was
based on a VI 10-s schedule and the rate of
punishment was based on a VI 20-s schedule.
For all conditions, SPP was set at .b, a titration
procedure was used (see Experiment 1), and
each session ended after the participant had
obtained 70 points or reached 400 trials,
whichever came first.

Each participant received three experimen-
tal sessions but was only presented with two
conditions. Participants received the two con-
ditions in one of two orders. For Order 1, an R-
only condition was presented first, followed by
an R+P condition, then the same R-only
condition again (i.e., an ABA design). For
Order 2, an R+P condition was presented first,
followed by an R-only condition, then the R+P
condition again (i.e., a BAB design). Partici-
pants were presented with the same reinforcer
ratio (i.e., 5:1 or 1:5) and the same stimulus
type (blue—yellow or blue-red) across all three
sessions, and this was counterbalanced across
all participants (Table 2).

RESULTS AND DIScUSSION

Experimental sessions lasted approximate-
ly 30 to 40 min, with an average of 338 trials
completed (SD = 41.2). The last 120 trials

from each experimental session were ana-
lyzed for each participant in the same
manner as Experiment 1. However, log b
was calculated for all conditions with the rich
alternative in the numerator (i.e., positive
log b values reflected preference for the rich
alternative). These data are presented in
Table 2.

Figure 5 (top) plots estimates of discrimi-
nability (log d) for each participant who
received Order 1 (left) or Order 2 (right)
across the three sessions in Experiment 2.
Like Experiment 1, estimates of discriminabil-
ity did not differ significantly across the three
sessions for participants who sat Order 1,
F(2,12) = .752, p = .49, or Order 2, F(2,14) =
2.351, p = .13, although the means (Figure 5,
solid lines) suggest that estimates of discrim-
inability were slightly lower for R-only condi-
tions when compared to R+P conditions,
consistent with Experiment 1. A 3 (Session)
X 2 (Order) ANOVA found that mean
discriminability differed significantly between
the two condition orders (Order 1: M = 0.73;
Order 2: M = 0.99), I(1,13) = 12.46, p < .01,
indicating that those who received two R+P
conditions (Order 2) responded more accu-
rately than those who only received one R+P
condition (Order 1). Like Experiment 1, this
could be the result of the increased feedback
received in R+P conditions, or due to be-
tween-group differences.

A cursory examination of Figures 4 (Exper-
iment 1) and 5 (Experiment 2) finds that
discriminability estimates from Experiment 2
appear greater than Experiment 1. Estimates
of discriminability were averaged across all
three sessions for each participant in Experi-
ment 2, and also across the 1:5 and b5:1
conditions for each participant in Experiment
1, and a two-sample #test found a significant
difference between Experiment 1 (M = .42)
and Experiment 2 (M = .86), {(26) = 6.756, p
< .001. This is not surprising, however, due to
the changes in characteristics (i.e., different
participant pools, changes in computer screen
and stimulus array sizes, and in some cases,
changes in stimulus array colors) between the
two experiments.

Figure 5 (bottom) plots estimates of re-
sponse bias (log b) for each participant who
received Order 1 (left) or Order 2 (right)
across the three sessions in Experiment 2. A
cursory examination of the means for Order 1
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Table 2

The numbers of B;y, Bjo, Boy, and Bes responses, Ry; and R reinforcers, Po; and Pys punishers,
and estimates of discriminability (log d) and response bias (log b) calculated across the last 120
trials for each participant in each condition of Experiment 2.

Part. Cond. Order By Bio Bo; Boo Ry Roo Py Pio log d log b
ORDER 1
AIS 1:5R 1 42 18 19 41 19 5 0 0 0.70 0.03
1:5P 2 54 6 34 26 25 4 5 4 0.84 1.07
1:5R 3 48 11 33 28 22 5 0 0 0.57 0.71
AR 1:5R 1 44 17 20 39 24 6 0 0 0.70 0.12
1:5P 2 53 7 24 36 25 5 3 5 1.06 0.70
1:5R 3 50 11 27 32 25 6 0 0 0.73 0.58
M 1:5R 1 52 10 28 32 18 6 0 0 0.77 0.66
1:5P 2 51 9 31 29 25 4 2 5 0.72 0.78
1:5R 3 51 10 31 28 19 4 0 0 0.66 0.75
MB 5:1R 1 32 28 14 46 4 26 0 0 0.57 0.46
5:1P 2 29 31 4 56 6 22 2 4 1.12 1.18
5:1R 3 - - - - - - - - - -
Sp 5:1R 1 50 10 18 42 4 19 0 0 1.07 —0.33
5:1P 2 51 8 17 44 5 22 2 4 1.22 —0.39
5:1R 3 31 29 11 49 3 21 0 0 0.68 0.62
TK 5:1R 1 34 26 19 41 4 22 0 0 0.45 0.22
5:1P 2 34 24 11 51 5 26 7 4 0.82 0.51
5:1R 3 33 27 20 40 5 18 0 0 0.39 0.21
YH 1:5R 1 42 18 27 33 21 5 0 0 0.46 0.28
1:5P 2 55 7 29 29 26 5 3 6 0.90 0.90
1:5R 3 49 11 30 30 29 5 0 0 0.65 0.65
YWO 5:1R 1 41 18 24 37 4 21 0 0 0.55 -0.17
5:1P 2 12 48 5 55 3 18 5 3 0.44 1.64
5:1R 3 37 23 7 53 4 19 0 0 1.09 0.67
ORDER 2
AC 5:1P 1 50 10 25 35 4 20 5 5 0.85 —0.55
5:1R 2 45 15 19 41 3 22 0 0 0.81 —0.14
5:1P 3 45 15 3 57 6 27 3 1 1.76 0.80
AS 1:5P 1 56 4 34 26 18 5 6 3 1.03 1.26
1:5R 2 49 11 32 28 19 4 0 0 0.59 0.71
1:5P 3 54 6 33 27 19 4 3 4 0.87 1.04
BD 1:5P 1 56 5 12 47 23 5 2 5 1.64 0.46
1:5R 2 56 3 40 21 20 4 0 0 0.99 1.55
1:5P 3 57 3 42 18 18 3 5 2 0.91 1.65
CL 1:5P 1 40 20 9 51 22 4 4 5 1.05 —0.45
1:5R 2 43 16 24 37 20 4 0 0 0.62 0.24
1:5P 3 52 8 34 26 23 4 4 4 0.70 0.93
LC 1:5P 1 57 3 31 29 20 4 3 2 1.25 1.31
1:5R 2 50 9 31 30 20 5 0 0 0.73 0.76
1:5P 3 58 2 23 37 21 5 0 2 1.67 1.26
RC 5:1P 1 35 26 9 50 5 22 6 4 0.87 0.62
5:1R 2 40 21 6 53 6 23 0 0 1.23 0.67
5:1P 3 28 32 3 57 7 23 3 2 1.22 1.34
RS 5:1P 1 49 11 24 36 6 24 5 4 0.82 —0.47
5:1R 2 33 27 8 52 6 29 0 0 0.90 0.73
5:1p 3 36 24 9 51 6 25 5 8 0.93 0.58
TS 5:1P 1 32 28 7 53 4 27 4 7 0.94 0.82
5:1R 2 20 39 7 54 4 25 0 0 0.60 1.18
5:1P 3 17 43 3 57 4 21 3 1 0.88 1.68
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Fig. 5. Discriminability (log d — top) and response bias (log - bottom) are plotted over the three sessions for Order
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overall means are given.

(Figure 5, bottom left—solid lines) shows an
increase in response bias from the first session
(R-only condition, log b = 0.15) to the second
session (R+P condition, log 4 = 0.79), with a
slight decrease on the third session (R-only
condition, log b = 0.60). This pattern was fairly

consistent across 6 of the 8 participants® and a
Friedman test found a significant difference in

?Participant MB (Figure 5 left, filled diamonds) com-
pleted all three sessions but data from the final session was
lost due to a computer error. However, the increase in
MB’s response bias from the first to second session was also
consistent with the mean findings.
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response bias across the three sessions, y* =
7.143, df = 2, p < .05. However, paired sample
ttests only found a significant increase from R-
only to R+P (Sessions 1 to 2), #(7) = 2.960, p <
.05. For participants who received Order 2
(Figure 5, bottom right), there was an increase
in mean estimates of log b across the three
sessions (log b= 0.37,0.71, 1.16), with 6 out of
8 participants showing an increase from
Session 1 (R+P) to Session 2 (R-only), and 6
participants showing an increase from Session
2 (R-only) to Session 3 (R+P). While the
difference across the sessions approached
significance using a Friedman test, y°> =
5.250, df = 2, p = .07, paired-sample #tests
only found a significant increase in response
bias from R-only to R+P (Sessions 2 to 3), #(7)
= 3.634, p < .01.

Overall, the results from both orders found
significant increases in preference (i.e., re-
sponse bias) from conditions that held the
reinforcer ratio constant and unequal (5:1 or
1:5) with no punishment (R-only) to condi-
tions that superimposed a constant and equal
rate (1:1) of punishment onto unequal rates of
reinforcement (R+P). This is consistent with
the qualitative predictions made by a subtrac-
tive punishment version of Davison and
Tustin’s (1978) signal-detection model. It is
also consistent with the findings from the
concurrent-schedules literature (Critchfield, et
al,, 2003; de Villiers, 1980; Farley, 1980).
However, the present experiment only tested
the directional predictions of the additive
versus subtractive models of punishment using
one unequal reinforcer ratio per participant. It
is unclear whether there would be an increase
in preference for the rich alternative across a
number of different unequal reinforcer ratios.
It is also possible that the increase in prefer-
ence found in the present experiment only
occurred due to repeated exposure to the 1:5
or 5:1 reinforcer ratio. In fact, the significant
linear trends across the three sessions for
Order 1, F(1,7) = 14.82, p < .01, and Order 2,
F(1,7) = 13.11, p < .01, suggests that this
might have been the case. However, Johnstone
and Alsop (1996) found that increased expo-
sure to a constant and unequal reinforcer ratio
did not significantly change human response
bias patterns across four sessions when they
used a similar detection procedure (albeit
without punishers for errors). Overall, al-
though the present experiment found support

for a subtractive model of punishment, a
larger study arranging several reinforcer ratios
was needed.

EXPERIMENT 3

Like the previous experiment, Experiment 3
also tested the predictions of the additive versus
subtractive models of detection performance.
However, Experiment 3 arranged four different
unequal reinforcer ratios (5:1, 2:1, 1:2, 1:5),
both without (R-only) and with (R+P) a
constant and equal (1:1) rate of punishment
for errors. This approach has been taken by
Critchfield et al. (2003) with human partici-
pants and Farley (1980) with pigeons using
concurrent-schedule procedures. Both Critch-
field et al. and Farley presented their subjects
with conditions which varied the relative
frequency of reinforcers across the two alterna-
tives (Critchfield, et al.: from 7:1 to 1:7; Farley:
from 4:1 to 1:6) with and without a constant
and equal (1:1) rate of punishment superim-
posed across both alternatives. When estimates
of sensitivity (a, Equation 1) were compared
between reinforcer-only and reinforcer + pun-
isher conditions, both studies found increased
sensitivity with the inclusion of punishment,
consistent with a subtractive model of punish-
ment. If an increase in sensitivity is found in the
present experiment, this would support a
subtractive punishment model of detection
performance (Figure 2 bottom, dashed line),
consistent with the findings from concurrent-
schedule procedures that have arranged similar
conditions (Critchfield, et al., 2003; Farley,
1980) and also the detection procedure used
in Experiment 2.

METHOD
Participants

Eight university students were recruited
from a job recruitment agency for students at
the University of Otago. Each participant
received $80NZ after the completion of their
eighth and final session. There were 3 males
and 5 females aged between 19 and 24 years
(M = 21.3 years).

Apparatus

The experiment was conducted in the same
room as Experiment 1 and the task was
presented on a 43 cm (17") LCD monitor.
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Table 3

The numbers of Byj, Bjo, Boy, and Bgs responses, Ry; and Ry reinforcers, Po; and Pys punishers,
and estimates of discriminability (log d) and response bias (log b) calculated across the last 120

trials for each participant in each condition of Experiment 3.

Part. Cond. Order B Bio By Boo Ry Roo Poy Pio log d log b
CB 5:1R 4 43 18 17 42 25 5 0 0 0.39 —=0.01
2:1R 2 32 28 25 35 13 6 0 0 0.10 —0.04
1:2R 3 45 20 9 56 15 24 0 0 0.57 —0.22
1:5R 1 34 27 18 41 4 26 0 0 0.23 —=0.13
5:1P 8 31 29 17 43 17 5 7 8 0.22 —0.19
2:1P 6 29 31 10 50 15 7 7 0.34 —0.36
1:2P 7 46 14 3 57 12 22 3 5 0.90 —0.38
1:5P 5 28 32 5 55 5 28 3 7 0.49 —0.55
CM 5:1R 3 39 20 20 41 22 3 0 0 0.30 —0.01
2:1R 1 45 16 28 31 18 9 0 0 0.25 0.20
1:2R 4 50 10 19 41 8 19 0 0 0.52 0.18
1:5R 2 32 28 17 43 4 21 0 0 0.23 -0.17
5:1P 7 32 28 8 52 20 5 7 2 0.44 —0.38
2:1P 5 39 21 20 40 18 9 8 6 0.28 —0.02
1:2P 8 28 33 8 51 8 17 5 1 0.37 —0.44
1:5P 6 32 27 14 47 5 24 6 10 0.30 —-0.23
CY 5:1R 5 49 11 23 37 23 6 0 0 0.43 0.22
2:1R 7 40 20 13 47 20 8 0 0 0.43 -0.13
1:2R 6 44 16 15 45 11 18 0 0 0.46 —=0.02
1:5R 8 26 33 11 50 4 23 0 0 0.28 —0.38
5:1P 1 51 9 32 28 22 4 7 8 0.35 0.41
2:1P 3 44 17 18 41 16 9 7 6 0.39 0.03
1:2P 2 42 18 17 43 9 17 8 8 0.39 —0.02
1:5P 4 27 35 0 58 4 23 0 0 0.98 —1.09
DK 5:1R 7 46 14 26 34 22 6 0 0 0.32 0.20
2:1R 5 49 11 24 36 22 9 0 0 0.41 0.24
1:2R 8 32 28 13 47 9 16 0 0 0.31 —0.25
1:5R 6 31 29 7 53 5 24 0 0 0.45 —0.43
5:1P 3 52 8 24 36 25 5 6 4 0.49 0.32
2:1P 1 40 21 22 37 21 10 11 11 0.25 0.03
1:2P 4 38 22 9 51 10 20 5 5 0.50 —0.26
1:5P 2 26 34 4 56 6 30 3 2 0.51 —0.63
JF 5:1R 6 51 8 24 37 26 6 0 0 0.50 0.31
2:1R 8 53 8 10 49 22 12 0 0 0.76 0.07
1:2R 5 47 13 14 46 9 21 0 0 0.54 0.02
1:5R 7 42 16 10 52 6 25 0 0 0.57 -0.15
5:1P 2 59 1 42 18 25 4 0 1 0.70 1.07
2:1p 4 54 6 21 39 24 12 5 3 0.61 0.34
1:2P 1 55 6 18 41 10 22 6 5 0.66 0.30
1:5P 3 50 9 19 42 5 25 6 7 0.54 0.20
LSS 5:1R 8 51 10 13 46 24 5 0 0 0.63 0.08
2:1R 6 45 15 12 48 19 9 0 0 0.54 —0.06
1:2R 7 45 15 13 47 11 20 0 0 0.52 —0.04
1:5R 5 39 20 13 48 5 26 0 0 0.43 —-0.14
5:1P 4 47 12 20 41 26 6 8 7 0.45 0.14
2:1P 2 52 8 21 39 21 11 6 6 0.54 0.27
1:2P 3 52 9 19 40 9 21 4 6 0.54 0.22
1:5P 1 30 29 9 52 6 22 8 6 0.39 —0.37
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Table 3
(Continued )
Part. Cond.  Order By, Bis By, Boo Ry Roo Py Py logd logd
MK 5:1R 2 42 18 26 34 22 4 0 0 0.24 0.13
2:1R 4 26 23 20 31 11 8 0 0 0.12 -0.07
1:2R 1 30 30 19 41 8 20 0 0 0.17 —-0.17
1:5R 3 21 39 11 49 6 26 0 0 0.19 —0.46
5:1pP 6 32 28 26 34 24 4 11 8 0.09 —-0.03
2:1pP 8 37 23 18 42 21 10 9 10 0.29 —0.08
1:2P 5 22 38 8 52 10 20 4 7 0.29 —0.53
1:5P 7 30 31 8 51 5 24 6 3 0.40 —0.41
NC 5:1R 1 56 3 40 21 22 5 0 0 0.50 0.78
2:1R 3 51 10 18 41 22 7 0 0 0.53 0.18
1:2R 2 38 20 13 49 8 18 0 0 0.43 —=0.15
liéR 4 34 25 18 44 4 25 0 0 0.26 —-0.13
5:1pP 5 49 11 23 37 24 5 5 6 0.43 0.22
2:1pP 7 51 9 35 25 13 9 4 4 0.30 0.45
1:ZP 6 53 7 27 33 6 16 3 6 0.48 0.40
1:5P 8 43 17 16 44 4 24 5 7 0.42 —0.02

The stimuli were 12 X 12 arrays (115 mm wide
X 125 mm high) in the center of the white
screen, with each position of the array occu-
pied by either a blue or a red ‘‘greeblie”
(measuring 8 mm wide and 9 mm high)
against a white background. ‘‘More blue”
stimuli consisted of 75 random array positions
filled with blue greeblies and 69 random array
positions filled with red greeblies. ‘‘More red”
stimuli contained 75 random array positions
filled with red greeblies and 69 random array
positions filled with blue greeblies. Partici-
pants responded on a two-key response panel
(with telegraph Morse keys) connected to the
computer’s USB port via a Lab Jack™ inter-
face device. Beside the left key was a picture of
a blue greeblie (indicating the response for
“more blue’’), and beside the right key was a
picture of a red greeblie (indicating the
response for ‘“‘more red’’).

Procedure

There were eight conditions in Experiment
3. Four conditions varied the reinforcer ratio
without punishment for errors (similar to the
R-only conditions in Experiment 2); the four
ratios used were 5:1, 2:1, 1:2, and 1:5. These R-
only conditions were labeled 5:1R, 2:1R, 1:2R,
and 1:5R, respectively (Table 3). The distribu-
tion of reinforcers was varied using interde-
pendent scheduling with the overall rate of
reinforcement based on a VI 10-s schedule.

Another four conditions also varied the
reinforcer ratio (5:1, 2:1, 1:2, and 1:5), but
included punishment for errors (similar to the
R+P conditions in Experiment 2). These R+P
conditions were labeled 5:1P, 2:1P, 1:2P, and
1:5P, respectively (Table 3). The distribution
of punishers was held constant and equal (1:1)
using interdependent scheduling, with overall
rates of reinforcement and punishment based
on VI 10-s schedules. For all conditions, SPP
was set at .5. The difficulty levels for each
condition were not titrated (i.e., all stimuli
contained 75 greeblies of one color and 69
greeblies of the other).

Participants received one condition per
session. Sessions were conducted no less than
24 hours apart and no more than one week
apart. The presentation order of the condi-
tions was partially counterbalanced across all
the participants, with the constraints that all
four R-only conditions and all four R+P
conditions were sat consecutively, and that
no two consecutive conditions arranged the
greater reinforcer frequency on the same key
(Table 3).

The general procedure and instructions
were similar to those presented in Experiment
2. However, some additional feedback was
presented during the consequence screens
corresponding to the response made. If the
participant made a correct left key (‘““more
blue’’) response and a reinforcer was sched-
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uled for that response, a blue check (V)
appeared in the bottom left hand corner of
the screen. Likewise, if the participant made a
correct right key (‘‘more red’’) response and a
reinforcer was scheduled, a red check ap-
peared in the bottom right hand corner of the
screen. For the R+P conditions, additional
feedback was also presented when participants
obtained a punisher. If the participant made
an incorrect ‘“‘more blue” or ‘“‘more red”
response and a punisher was scheduled for
that response, a blue or red picture of a “X”’
appeared at the bottom of the screen, on the
side corresponding to the response key they
just pressed. For the R-only conditions, partic-
ipants reached 70 points or 50 min to finish
each session. For the R+P conditions, partici-
pants reached 50 points (net) or 50 min to
finish each session.

REsuLTS AND DiscussioNn

Experimental sessions lasted approximately
30 to 40 min, with an average of 338 trails
completed (SD = 75.0). The last 120 trials
from each experimental condition were
analyzed for each participant in the same
manner as Experiment 1. Participant CY
made zero Be; responses in the last 120 trials
of Condition 1:5P; thus, a correction was
made with Bo; = 0.5 for calculations of log d
and log b for that particular participant in
that condition. These results are presented in
Table 3.

Figure 6 plots estimates of log d (top) and log
b (bottom) for each participant across the four
relative reinforcer frequency variations (5:1,
2:1, 1:2, and 1:5) for the R-only (left) and R+P
(right) conditions. Estimates of discriminability
were more variable in Experiment 3 compared
to those obtained in Experiments 1 and 2; this
is most likely because task difficulty was not
titrated in the present experiment. Mean
discriminability did not differ systematically
across the R-only conditions, £1(3,21) = 1.319,
p = .30, or R+P conditions however, F(3,21) =
1.536, p = .24, so the absence of a titration
procedure appeared not to affect the overall
findings. Again, this independence between
discriminability and relative reinforcer frequen-
cy variations is consistent with Davison and
Tustin’s (1978) model of signal detection. Like
Experiments 1 and 2, mean discriminability was
slightly higher across R+P conditions (M =
0.45) than R-only conditions (M = 0.35), but a

4 (Reinforcer Ratio) X 2 (Condition Type)
ANOVA found no significant effect of condi-
tion type, I(1,14) = .824, p = .38.

Figure 6 (bottom) shows that estimates of
response bias were more variable for R+P
conditions than R-only conditions. For the R-
only conditions, estimates of response bias
differed significantly across reinforcer ratios,
F(3,21) = 10.74, p < .001. As with Experiment
1, individual estimates of sensitivity were
calculated from each participant’s response
bias data for R-only conditions using least
squares linear regression analyses. Positive
slopes were found across all participants (M
= 0.31), and a one-sample ttest found that
these were significantly greater than zero, (7)
= 4.578, p < .01. Thus, participants were
systematically biased towards the alternative
associated with the higher rate of reinforce-
ment. The mean slope was similar to the slope
obtained with Group A of Experiment 1
(Figure 3, M = 0.36) which arranged similar
conditions, and also with previous human
detection research; for example, mean slope
ranged between 0.33 to 0.36 across experi-
ments in Alsop et al.’s (1995) study.

For the R+P conditions, estimates of re-
sponse bias also differed significantly across
reinforcer ratios, F(3,21) = 7.633, p < .01.
Individual estimates of sensitivity were calcu-
lated from each participant’s response bias
data for R+P conditions using least squares
linear regression analyses. Again, positive
slopes were found across all participants (M
= 0.40) with the possible exception of a
negligible slope obtained by CM. A one-sample
ttest also found that these slopes were
significantly greater than zero, #(7) = 3.860,
p < .01. Thus, on average, participants showed
a greater preference towards the alternative
associated with the higher rate of reinforce-
ment when errors were punished occasionally
than when they were not. This increase in
mean sensitivity from reinforcer-only to rein-
forcer + punisher conditions is more consis-
tent with a subtractive model of punishment
than an additive model.

A closer analysis of the individual response
bias data was performed to see if within-subject
changes in sensitivity were consistent with the
mean increase from R-only to R+P conditions.
Figure 7 shows each individuals’ response bias
data across the four relative reinforcer frequency
variations, and also displays the results from least
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Fig. 6. Discriminability (log d — top) and response bias (log b — bottom) are plotted over changes in relative
reinforcer frequency (log Ry;/Rgs) for the reinforcer-only conditions (left) and the reinforcer + punisher conditions
(right) in Experiment 3. Individual participant data and the overall means are given.

squares linear regression analyses performed on
each participant for both condition types for
Experiment 3. Five participants (CB, CY, DK, JF,
and LSS) showed increases in sensitivity from R-
only conditions (filled circles) to R+P conditions
(unfilled triangles), with reasonably good re-
gression fits (M = .79). However, 3 participants
(NC, CM, and MK) showed decreases in
sensitivity from R-only to R+P conditions, but
regression fits were quite poor (i.e., close to
zero) for 2 of the 3 participants (NC, CM); only 1
participant (MK) showed a decrease in sensitivity
with good regression fits. Again, the increases in
sensitivity favor a subtractive punishment model,

consistent with findings from the concurrent-
schedules literature (e.g., Critchfield, et al.,
2003; Farley, 1980).

There was, however, some evidence that the
order in which participants received the R-only
and R+P conditions affected performance.
Participants CB, CM, MK, and NC received
all four R-only conditions followed by the R+P
conditions (Figure 7, left panels), with 3
participants showing lower sensitivity in R-only
than R+P conditions (albeit 2 with poor
regression fits). Mean sensitivity across these
4 participants was 0.31 for R-only conditions
and 0.19 for R+P conditions. In contrast, all 4
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Fig. 7. Response bias (log b) is plotted over changes in
relative reinforcer frequency (log R;;/Rgs) separately for
each participant in Experiment 3. Reinforcer-only condi-
tions are presented as filled circles, while reinforcer +
punisher conditions are presented as unfilled triangles.
Results from least squares linear regression analyses are
also presented for each participant for R-only and R+P
conditions separately.

participants who received R+P conditions
followed by R-only conditions (CY, DK, JF,
and LSS—Figure 7, right) showed greater
sensitivity with the inclusion of punishment
(along with reasonable regression fits). Mean
sensitivity for these participants was 0.31 for R-
only conditions, and 0.61 for R+P conditions.

It is unclear why an order effect was found in
the present experiment. However, a number
of reasons were explored. First, it is possible

that sensitivity to the reinforcer ratio de-
creased over the course of the experiment.
In both cases, participants obtained lower
estimates of sensitivity for the second condi-
tion type compared to the first condition type
(0.31 to 0.19 for one group, 0.61 to 0.31 for
the other). However, mean estimates of
sensitivity for the R-only conditions were
identical for both groups, and also consistent
with Group A of Experiment 1 (@ = 0.36) and
previous research (e.g., Alsop et al., 1995); this
consistency argues against a general overall
decrease in sensitivity.

Second, the difference in sensitivities was
perhaps related to differences in discrimina-
bility. Figure 6 (top) shows that participants
who received R+P conditions first had higher
estimates of discriminability than those who
received the R+P conditions second; however,
this difference was not significant. Further-
more, no significant correlations were found
between estimates of sensitivity and estimates
of discriminability for the R-only conditions (r
= —.05,n = 8, p = .92) or the R+P conditions
(r=.47,n=28, p=.23).

Finally, previous concurrent schedule re-
search (e.g., Alsop & Elliffe, 1988; Logue &
Chavarro, 1987) has found that increases in
overall reinforcer rate increased sensitivity. It is
possible that changes in sensitivity in the
present experiment were related to overall
reinforcer or punisher rates. To investigate
this, overall reinforcer and punisher rates were
calculated for each condition, and 4 (Rein-
forcer Ratio) X 2 (Order) ANOVAs were
performed on the R-only and R+P conditions
separately. No significant difference in overall
punisher rates was found for the R+P condi-
tions, F(1,6) = 0.062, p = .81, however, the
differences in overall reinforcer rates ap-
proached significance for the R+P conditions,
F(1,6) = 5.280, p = .06, and was significant for
the R-only conditions, F(1,6) = 12.30, p < .05.
In both cases, participants who were presented
with R-only conditions second received higher
rates of reinforcement (R+P: M = 274
reinforcers/min; R-only: M = 2.96 reinforc-
ers/min) than those who were presented with
the R-only conditions first (R+P: M = 2.55
reinforcers/min; R-only: M = 2.63 rfrs/min).
However, it seems unlikely that such a small
difference in reinforcer rate (R+P = 0.19
reinforcers/min; R-only = 0.33 reinforcers/
min) was sufficient to affect sensitivity, partic-
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ularly since Alsop and Elliffe varied reinforcer
rates between 0.22 and 10 reinforcers per
minute to demonstrate an effect.

GENERAL DISCUSSION

The present experiments demonstrated that
pointloss punishers for errors influenced
human performance on detection tasks. Vary-
ing the relative frequency of pointloss pun-
ishment systematically biased participants away
from responding on the alternative associated
with the higher rate of punishment (Group B
— Experiment 1). This was consistent with the
predictions made by both additive and sub-
tractive punishment versions of Davison and
Tustin’s (1978) GML-based model of signal
detection (Figure 2, top). These results were
also parallel but opposite to the effects of
reinforcing correct responses with point gains
(Group A — Experiment 1), which systemati-
cally biased participants towards the alterna-
tive associated with the higher rate of rein-
forcement; this was consistent with previous
human detection research (Alsop, et al., 1995;
Johnstone & Alsop, 1996).

The results from Experiments 2 and 3 found
that point-loss punishers also had an effect on
preference for the more reinforced alterna-
tive. In both experiments, there was some
evidence for increases in preference for the
more reinforced alternative when a constant
and equal rate of punishment was superim-
posed onto two response alternatives. Howev-
er, order effects were found in both experi-
ments. In Experiment 2, a general increase in
sensitivity across the three sessions cannot be
ruled out, although some reversal of the
effects of punishment was found with Order
1 (R-only, R+P, R-only), and significant in-
creases were found from R-only to R+P
conditions. In Experiment 3, although 5 of
the 8 participants obtained higher sensitivity
estimates for R+P conditions than R-only
conditions (consistent with a subtractive mod-
el of punishment), 4 of the 5 participants
received R+P conditions first followed by R-
only conditions. While previous researchers
(Critchfield, et al., 2003; Farley, 1980) pre-
sented R-only conditions first followed by R+P
conditions, 3 of the 4 participants in Experi-
ment 3 (of the present set of studies) who
received conditions in this order showed
decreases in sensitivity; that is, the opposite

finding to previous studies. Thus, it appears
that condition order may also play some part
in the effects of punishment on sensitivity. The
effects of condition order on detection and
choice task performance may warrant further
investigation.

Together, the data from Experiments 2 and
3 provide greater support for a subtractive
punishment version over an additive punish-
ment version of Davison and Tustin’s (1978)
GML-based model of signal detection perfor-
mance (Figure 2). This result is consistent with
findings wusing concurrent-schedule choice
procedures, where there is overwhelmingly
more support for a subtractive model of
punishment (e.g., Critchfield, et al., 2003; de
Villiers, 1980; Farley, 1980) over an additive
model of punishment (Deluty, 1976). In fact,
only Deluty (1976; but see also Deluty, 1982;
Deluty & Church, 1978) has claimed support
for an additive model of punishment. A closer
look at Deluty’s (1976) experiment however,
shows that the conditions he ran were not
adequate to directly compare the additive and
subtractive models. A reanalysis of Deluty’s
data by de Villiers (1980) showed that the
subtractive model accounted for a similar
amount of the variance in Deluty’s data as
the additive model; that is, both models made
nearly identical predictions for Deluty’s con-
ditions. Thus, there appears to be very little
support for an additive model of punishment,
and the findings from the present experiments
extend the support for the subtractive model
of punishment beyond that of the simple
concurrent-schedule choice procedure to the
signal-detection choice procedure.

While Davison and Tustin’s (1978) model
appeared to capture the effects that punish-
ment had on the participants’ behavior quite
well, Alsop and Davison (Alsop, 1991; Alsop &
Davison, 1991; Davison, 1991) and Davison
and Nevin (1999) have proposed a competing
model of detection performance based on the
discriminability (or confusability) of stimulus—
response and response-reinforcer contingen-
cies. The contingency-discriminability model
addresses the lack of parameter invariance
sometimes found with Davison and Tustin’s
model by using two independent parameters —
one which measures the discriminability be-
tween the stimulusresponse contingency
(termed d; or dy,) and another which measures
the discriminability between the response—
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reinforcer contingency (termed d, or d,,).
However, the independence of d; and d, has
also received mixed support, with some studies
finding an interaction between d; and d, and
others finding no relation (see Alsop & Porritt,
2006 for a summary). Furthermore, it is
unclear how punishers should be incorporated
into the contingency-discriminability model.
For example, will the discrimination of re-
sponse-reinforcer and response—punisher con-
tingencies require the same parameter or
separate parameters? Likewise, is discrimina-
bility between the stimulus-response contin-
gencies similar or different following a rein-
forcer or a punisher? Even with the
assumption that d; and d, are identical for
reinforcers and punishers, the simplest addi-
tive and subtractive punishment versions of
the Alsop-Davison-Nevin model make similar
predictions to the additive and subtractive
versions of the Davison and Tustin model
(Figure 2). As it currently stands, the integra-
tion of reinforcer and punisher effects in
detection models appears less complex with
the GML-based Davison and Tustin model
compared to the Alsop-Davison-Nevin contin-
gency-discriminability model.

The present experiments found an inde-
pendence between estimates of discriminabil-
ity and changes to the reinforcer or punisher
contingencies, consistent with the parameter
invariance assumption from the Davison and
Tustin (1978) model. However, there was
some evidence that discriminability was higher
in conditions where punishment for errors was
included (R+P conditions) than conditions
with no punishment (R-only conditions; Ex-
periments 1 and 2); the additive or subtractive
versions of the Davison and Tustin model
(Equations 6 to 11) do not predict this
finding. It is possible that punishers improve
discriminability by altering motivation or
attention. A recent model proposed by Nevin,
Davison, and Shahan (2005) integrates the
Alsop-Davison-Nevin (Alsop & Davison, 1991;
Davison & Nevin, 1999) contingency-discrimi-
nability model with a theory of attending.
Nevin et al. proposed that the probability of
attending to the sample stimuli (S; and So)
and comparison stimuli (termed C; and Cs for
the stimuli signaling the B, and By responses,
respectively) in a detection task is positively
related to the reinforcer rate, in a manner
similar to behavioral momentum theory (Ne-

vin & Grace, 2000). Although Nevin et al.’s
model deals explicitly with the effects of
reinforcement on attention, it is unclear how
the effects of punishers should be integrated
into such model. Does the inclusion of
punishment for errors increase the probability
of attending to the sample and/or comparison
stimuli? If so, does the increase in discrimina-
bility (log d) found for R+P conditions in the
present experiments imply that reinforcement
and punishment combine additively to in-
crease the probability of attending beyond
the effects of reinforcement alone? This might
be a challenge for any model based on the
reinforcer effects encompassed by behavioral
momentum. Given how little is known about
the effects of punishment on attention, this
may be a worthwhile direction for future
research.

The present series of experiments is the
first systematic investigation of the effects of
punishment on human signal-detection per-
formance, and there are some limitations with
areas for improvement. For example, due to
time limitations and monetary constraints,
participants only received one session per
condition while previous studies of choice
and punishment (e.g., Critchfield, et al,
2003; Farley, 1980) arranged a number of
sessions per condition. A larger range of ratios
may have also been better suited to the
differing additive and subtractive model pre-
dictions, as the deviations from linearity are
predicted by the subtractive model at extreme
ratios (Figure 2, dashed line). Future direc-
tions for research may include studying other
punisher types (e.g., response effort, time-
out), and comparisons between human and
nonhuman detection performance. Because
punishers are real consequences in many
everyday situations (e.g., quality control and
medical screening both have positive conse-
quences for correct choices and negative
consequences for errors), research on the
interaction between reinforcement and pun-
ishment is thus important on both theoretical
and applied grounds.
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